Crystal structure, biological and docking studies of solvothermally isolated novel Schiff base

dc.contributor.authorVernekar, Beena K.
dc.contributor.authorKotkar, Gayatri D.
dc.contributor.authorD'souza, Luann R.
dc.contributor.authorHathwar, Venkatesha R.
dc.contributor.authorDhuri, Sunder N.
dc.date.accessioned2024-12-23T09:44:39Z
dc.date.available2024-12-23T09:44:39Z
dc.date.issued2023
dc.description.abstractSolvothermal condensation of 4-hydroxy-3-methoxy benzaldehyde and ethylenediamine resulted in single crystals of the novel Schiff base N,N'-Bis(4-hydroxyl-3-methoxybenzylidene)ethane-1,2-diamine (H2L) while the conventional method yielded microcrystalline H2L. Single crystals of H2L were characterized by various techniques, including single crystal X-ray diffraction. The structural analysis revealed crystallization of H2L in the monoclinic P21 space group with z = 4 and z′ = 2 indicating the presence of two independent H2L molecules in the asymmetric unit of the crystal structure connected by O6-H6…N2 weak contacts involving H and N atoms of the hydroxyl and amine groups respectively. The biological activities, namely DNA binding and cell viability studies of H2L, were performed. H2L exhibited potent activity against mushroom tyrosinase enzyme. In this work, in-silico docking studies have been conducted to evaluate the effective binding modes of H2L with 2y9x mushroom tyrosinase protein. The docking studies revealed minimum binding energy of -6.43 kcal mol−1 for H2L compared to the value of -3.64 kcal mol−1 for standard Kojic acid. The antibacterial performance of H2L was tested, and the results are presented.
dc.identifier.citationJournal of Molecular Structure. 1295(Part 2); 2023; ArticleID_136537.
dc.identifier.issn0022-2860
dc.identifier.urihttps://doi.org/10.1016/j.molstruc.2023.136537
dc.identifier.urihttp://khandolacollege.ndl.gov.in/handle/123456789/103
dc.language.isoen
dc.publisherElsevier
dc.subjectNATURAL SCIENCES::Chemistry
dc.titleCrystal structure, biological and docking studies of solvothermally isolated novel Schiff base
dc.typeArticle
Files
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: